https://doi.org/10.25678/000B0K
Aquascope October 2021
Dataset extent
Data and Resources
-
class_and_feat_5p0xMAG_oct2021.tar.gz
TAR
-
images_5p0xMAG_oct2021.tar.gz
TAR
-
images_0p5xMAG_oct2021.tar.gz
TAR
-
class_and_feat_0p5xMAG_oct2021.tar.gz
TAR
-
README.txt
TXT
-
raw_data_5p0xMAG_Oct2021.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_1-5.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_6-9.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_10-13.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_14-16.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_17a.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_17b.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_17c.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_18-19.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_20.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_21.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_22.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_23.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_24.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_25a.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_25b.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_26.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_27.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_28.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_29.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_30.tar.gz
TAR
-
raw_data_0p5xMAG_oct2021_31.tar.gz
TAR
-
LICENSE
-
LICENSE.txt
TXT
Citation
Dennis, S., Merz, E., Reyes, M., Merkli, S., Baity Jesi, M., Kyathanahally, S., et al. (2023). Aquascope October 2021 (Version 1.0). Eawag: Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.25678/000B0K
Metadata
Author |
|
---|---|
Keywords | phytoplankton images,zooplankton images,plankton classification,machine learning,time series,image features,plankton communities |
Taxa (scientific names) |
|
Organisms (generic terms) |
|
Timerange |
|
Geographic Name(s) |
|
Review Level | domain specific |
Curator | Dennis, Stuart |
Contact | Pomati, Francesco <Francesco.Pomati@eawag.ch> |